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ABSTRACT 

 

Caspase-3 is a biochemical marker for cell apoptosis. Several studies fo-

cused on exploring caspase inhibitor potential in natural compounds. 

Hence, in this study, we investigated the anthocyanins as anti-apoptotic 

potential activity through caspase-3 using molecular docking. Six types of 

anthocyanin were retrieved from PubChem database and caspase-3 pro-

tein was downloaded from Protein Data Bank. Anthocyanins and caspase-

3 protein were docked using HEX 8.0 program and visualized using Dis-

covery Studio 4.1 software. The interaction among cyanidin-3-O-gluco-

side, delphinidin-3-O-glucoside, pelargonidin-3-O-glucoside, peonidin-

3-O-glucoside and petunidin-3-O-glucoside showed similar binding pat-

tern on caspase-3 protein. All of them bind to BIR2 region and allosteric 

site of caspase-3, which are a crucial site for apoptosis regulation. Inter-

estingly, cyanidin-3-O-glucoside, delphinidin-3-O-glucoside, pelargo-

nidin-3-O-glucoside and peonidin-3-O-glucoside are tightly bind to BIR2 

region and allosteric sites with hydrogen bond and hydrophobic interac-

tion. Even though malvidin-3-O-glucoside also interacted with caspase-3 

in BIR1, BIR2 and BIR3 regions. This study implies that cyanidin-3-O-

glucoside, delphinidin-3-O-glucoside, pelargonidin-3-O-glucoside and 

peonidin-3-O-glucoside are more potent as anti-apoptosis through binding 

to caspase-3 than other anthocyanins. Although all anthocyanins have po-

tential as an inhibitor of caspase-3 protein and might have potential as 

anti-apoptosis. Further in-vitro and in-vivo studies are needed to confirm 

this experiment. 
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Introduction 

Apoptosis is an essential process for cellular 

degradation for cell growth and development [1–

3]. The molecular marker of apoptosis is caspase, 

which is the proteolytic enzyme for protein or pep-

tide. Caspase-3 is one of the caspase family with 

the large and small domain structure. Caspase-3 

has the activity as an effector for apoptosis. It is 

activated by phosphorylation in p38 at Ser150. 

The activated caspase-3 will induce the cell lead-

ing to apoptosis [4–7].  

Several studies have examined the caspase in-

hibitor both in-vivo and in-vitro studies. Peptidyl 

inhibitor for caspase has been reported to inhibit 
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caspase-3 [8, 9]. The z-DEVD-fmk, one of pep-

tidyl inhibitor for caspase-3, has a potential activ-

ity as anti-apoptosis in rats brain tissue with acute 

cerebral infarction [10]. Furthermore, tetra-pepti- 

de aldehyde inhibitor AC-DEVD-CHO and Ac-

DEVD-CMK also inhibit caspase-3 to prevent 

apoptosis pathway [11]. The X-linked inhibitor of 

apoptosis was reported to directly inhibit caspase-

3 in neuron cells of rat ischemic model. However, 

the peptidyl inhibitor for caspase-3 is not preferred 

as a drug since the effect of it still being investi-

gated. Besides, the peptidyl inhibitors show non-

specific caspase-3 inhibitor and low cell permea-

bility in the cell [12]. Hence, some natural com-

pounds have been explored in their anti-apoptosis 

activity. Some compounds have been identified as 

caspase inhibitor. They are rosmarinic acid, curcu-

min, luteolin, huperzine A, quercetin, resveratrol, 

bilobalide, EGCG, apigenin, berberine, and chi-

tosan [13]. Flavonoid inhibits caspase-3 activity in 

MDA-MB-231 cells in in-vitro study [14].  

Anthocyanin is the flavonoid derivate that as a 

bioactive compound in black rice [15, 16]. Black 

rice anthocyanins have been reported promoting 

some health benefits as anti-obesity [17, 18], anti-

oxidant [19, 20], anti-inflammatory [21] and anti-

apoptosis [22, 23]. Black rice anthocyanins also 

induce cell proliferation and inhibit the apoptosis 

pathway [23]. Anthocyanin also promotes anti-

apoptotic effect on the human retinal pigment epi-

thelial cells [24]. However, the mechanism is still 

unclear. This study focused to determine the func-

tion of anthocyanins as a human caspase-3 inhibi-

tor by in silico approach. 

 

Material and Methods 

Ligand and protein preparation 

The 3D structures of black rice anthocyanins, 

cyanidin-3-O-glucoside (CID 12303221), del-

phinidin-3-O-glucoside (CID 443650), malvidin-3-

glucoside (CID 443652), pelargonidin-3-O-gluco-

side (CID 3080714), peonidin-3-glucoside (CID 

443654), and petunidin-3-O-glucoside (CID 

443651), were obtained from PubChem NCBI da-

tabase. We used PyRx software to minimize their 

energy and convert the .sdf format into .pdb for-

mat [25]. The caspase-3 protein was retrieved 

from the RCSB Protein Data Bank (PDB ID: 

1nms) and was removed from water and ligand us-

ing Discovery Studio 4.1 program (http://3dsbio-

via.com/products/).  

Molecular docking simulations 

The HEX 8.0 software was used in this study 

to predict the interaction and energy binding of an- 

thocyanins (cyanidin-3-O-glucoside, malvidin-3-O-

glucoside, peonidin-3-O-glucoside, petunidin-3-O-

glucoside, pelargonidin-3-O-glucoside, and del-

phinidin-3-O-glucoside) and caspase-3 protein. 

The docking result was visualized using Discov-

ery Studio 4.1 program (http://3dsbiovia.com/prod-

ucts/). 

 

Results and Discussion 

Cyanidin-3-O-glucoside bound to caspase-3 in 

Glu124, Lys137, Pro201, and Tyr195 (Figure 1A). 

Based on the 2D structure, cyanidin-3-O-gluco-

side-caspase-3 demonstrated some amino acid res-

idues of caspase-3 with van der Waals (Figure 1-

A3).  The Glu124, Lys137, Tyr195, and Pro201 

were also identified in caspase-3 and delphinidin-

3-O-glucoside, pelargonidin-3-O-glucoside or pe-

onidin-3-O-glucoside interactions (Figure 2, 4, and 

5). Interestingly, cyanidin-3-O-glucoside and pel-

argonidin-3-O-glucoside had a similar active site 

when interacted with caspase-3. Some previous 

studies reviewed that cyanidin-3-O-glucoside and 

pelargonidin-3-O-glucoside differed on R1. Cya-

nidin-3-O-glucoside has –OH in R1, while pelar-

gonidin-3-O-glucoside has –H in R1 [26, 27]. The 

structure of petunidin-3-O-glucoside is signifi-

cantly different compared with cyanidin-3-O-glu-

coside and pelargonidin-3-O-glucoside. Pe-

tunidin-3-O-glucoside is a methylated anthocya-

nin in R3, while cyanidin-3-O-glucoside and pel-

argonidin-3-O-glucoside are non-methylated an-

thocyanins [26, 27, 28]. Interestingly, the interac-

tion of petunidin-3-O-glucoside and caspase-3 

took place in the same position as of caspase-3 and 

cyanidin-3-O-glucoside or pelargonidin-3-O-glu-

coside interaction only at glucose group. Del-

phinidin-3-O-glucoside and peonidin-3-O-gluco-

side bound to caspase-3 in the same active site. 

There were three amino acid residues that have 

been detected in the malvidin-3-O-glucoside-

caspase-3 interaction, namely Asp34, Arg238 and 

Arg241 (Figure 3-A2). Petunidin-3-O-glucoside 

bound to caspase-3 in the Glu124, Lys137, 

Asn141 and Tyr203 (Figure 6-A2). Those data in-

dicated that cyanidin-3-O-glucoside, delphinidin-

3-O-glucoside, pelargonidin-3-O-glucoside, pe-

tunidin-3-O-glucoside and peonidin-3-O-gluco-

side interacted with caspase-3 in the same pocket  
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acid-caspase-3 were Arg179, Ser236, Gln283,   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 
Figure 1. The interaction between cyanidin-3-O-glucoside and caspase-3. A1. Overview of cyanidin-3-O-gluco-

side-caspase-3 complex, A2. The 3D structure of cyanidin-3-O-glucoside-caspase-3 complex, A3. The 

2D structure of cyanidin-3-O-glucoside-caspase-3 complex. Caspase-3 protein and cyanidin-3-O-glu-

coside were shown in blue and pink, respectively. B. Structure-based sequence of Caspase-3 domain 

interact with cyanidin-3-O-glucoside. The red box in the amino acid sequence indicates the binding site 

of anthocyanin-caspase-3. The secondary structure of caspase-3 is represented by the green arrow (β-

sheet), the red wave (α-helix), and the yellow line (loop). C. The binding site of cyanidin-3-O-glucoside 

into caspase-3. 
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Figure 2. The interaction between delphinidin-3-O-glucoside and caspase-3. A1. Overview of the delphinidin-3-

O-glucoside-caspase-3 interaction. The 3D and 2D structure of the complex are presented in A2 and 

A3, respectively. B. The sequence of delphinidin-3-O-glucoside-caspase-3, the red box indicates the 

binding site of delphinidin-3-O-glucoside into caspase-3, the green arrow represents the β-sheet, the red 

wave is α-helix and the yellow line represents the loop. The interaction between delphinidin-3-O-glu-

coside and caspase-3 is demonstrated in C. 
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Figure 3. The interaction between malvidin-3-O-glucoside and caspase-3. Overview of malvidin-3-O-glucoside-

caspase-3 complex in A1, The 3D and 2D structures of malvidin-3-O-glucoside-caspase-3 complex in 

A2 and A3. The blue color is caspase-3 protein and the pink color is malvidin-3-O-glucoside. B. Struc-

ture-based sequence of Caspase-3 domain interacts with malvidin-3-O-glucoside. Amino acid sequence 

with red box indicates the binding site of anthocyanin-caspase-3. The secondary structure of caspase-3 

is represented by the green arrow (β-sheet), the red wave (α-helix) and the yellow line (loop). C. The 

malvidin-3-O-glucoside binding site to caspase-3. 
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Figure 4. The interaction between pelargonidin-3-O-glucoside and caspase-3. A1. Overview of pelargonidin-3-

O-glucoside-caspase-3 complex, A2. The 3D structure of pelargonidin-3-O-glucoside-caspase-3 com-

plex, A3. The 2D structure of pelargonidin-3-O-glucoside-caspase-3 complex. Caspase-3 protein and 

pelargonidin-3-O-glucoside are shown in blue and pink, respectively. B. Structure-based sequence of 

Caspase-3 domain interacts with pelargonidin-3-O-glucoside. Amino acid sequence with red box indi-

cates the binding site of pelargonidin-3-O-glucoside-caspase-3. The secondary structure of caspase 3 

was represented by the green arrow (β-sheet), the red wave (α-helix) and the yellow line (loop). C. The 

binding site of pelargonidin-3-O-glucoside to caspase-3. 
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Figure 5. The interaction between peonidin-3-O-glucoside and caspase-3. A1. Overview of peonidin-3-O-gluco-

side-caspase-3 complex, A2. The 3D structure of caspase-3 with peonidin-3-O-glucoside complex, A3. 

The 2D structure of peonidin-3-O-glucoside-caspase-3 complex. Caspase-3 protein is shown in blue 

and peonidin-3-O-glucoside is in pink. B. Structure-based sequence of Caspase-3 domain interacts with 

peonidin-3-O-glucoside. Amino acid sequence with red box indicates the binding site of peonidin-3-O-

glucoside-caspase-3. The secondary structure of caspase-3 is represented by the green arrow (β-sheet), 

the red wave (α-helix) and the yellow line (loop). C. The binding site of peonidin-3-O-glucoside to 

caspase-3. 
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Figure 6. The interaction between petunidin-3-O-glucoside and caspase-3. The overview of the interaction, the 

3D and 2D structures of petinidin-3-O-glucoside-caspase-3 complex were shown in A1, A2 and A3, 

respectively. The blue color as caspase-3 protein and pink color as petunidin-3-O-glucoside. The se-

quences and the structure of caspase-3 are demonstrated in B. Red box indicates the active site of pe-

tunidin-3-O-glucoside on caspase-3 protein. The caspase-3 secondary structure, included β-sheet is 

showed by the green arrow, α-helix in the red wave and loop structure as yellow line. C. The binding 

site of petunidin-3-O-glucoside to caspase-3. 
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of caspase-3. Previous finding investigated the 

possible interaction of caspase-3 and several natu-

ral compounds. The active sites of rosmarinic 

Arg341, Phe381, His237, Cys285, Ser339, 

Trp340, and Arg341. The curcumin-caspase-3 in-

teraction showed some amino acid residues that 

were Arg179, His237, Gln283, Ala284, Tyr338, 

Ser339, Trp340, Arg341, Phe381 and Ser343. Lu-

teolin interacted with the Arg179, Ser236, Gln283, 

Tyr338, His237, Cys285, Tyr338, Ser339, 

Arg341, and Phe381 of caspase-3 [13]. Our study 

found that all anthocyanins except malvidin-3-O-

glucoside bound to caspase-3 protein in Arg164, 

Tyr197, and Pro201. Those binding sites were re-

ported as the allosteric site of the interface of the 

caspase-3 domain. They were involved in stabiliz-

ing the active conformation of caspase-3 as well 

[29, 30].  

The anthocyanin-caspase-3 interaction show-

ed that anthocyanin bound to different secondary 

structure of caspase-3 protein (Figure 1-6 sub B 

and C). Cyanidin-3-O-glucoside, delphinidin-3-

O-glucoside, pelargonidin-3-O-glucoside, pe-

onidin-3-O-glucoside, and petunidin-3-O-gluco-

side interacted with caspase-3 in BIR1-BIR2 inter-

connection region and BIR2 region, which the 

amino acid residues ranged between 98-101 and 

102-234, respectively. The BIR2 region is an im-

portant region to execute the apoptotic process in 

the cell [8].  

The active sites of anthocyanins-caspase-3 

complex were detected in α-helix, β-sheet and 

loop region. Interestingly, most of the anthocya-

nins binding sites were located in the loop struc-

ture of caspase-3 protein. The ligand binds to loop 

of caspase-3 suggested that act as inhibitor [30, 

31]. The 2D interaction of anthocyanin-caspase-3 

performed the different kind of interactions such 

as hydrogen bond, hydrophobic bond, covalent 

bond, van der Waals, pi-alkyl, unfavorable bump 

and pi stacked ion. Cyanidin-3-O-glucoside and 

delphinidin-3-O-glucoside have only one hydro-

gen bond and five hydrophobic bonds. Malvidin-

3-O-glucoside also has only one hydrogen bond 

and eight amino acids with van der Waals type. 

Pelargonidin-3-O-glucoside shows four hydro-

phobic bond and nine van der Waals interaction 

types. Peonidin-3-O-glucoside has four hydrogen 

bonds and six hydrophobic bonds, while pe-

tunidin-3-O-glucoside demonstrates 13 van der 

Waals interaction types, two hydrogen bonds and 

one hydrophobic bond. Those interaction contrib-

utes the binding energy of anthocyanin-caspase-3  

with the range -277.5 until -304.4 cal/mol.  

The different kinds of interaction affected the 

binding energy free [32]. Hydrogen bonds are im-

portant contributors for the structure and interac-

tion of protein-protein or ligand-receptor. In the 

drug design, hydrogen bond is critical to obtain the 

specificity of the drug to protein target [33–35]. In 

this study, malvidin-3-O-glucoside-caspase-3 in-

teraction showed the number of hydrogen and hy-

drophobic bond lower than other anthocyanins, 

but performed the highest binding affinity. Fur-

thermore, petunidin-3-O-glucoside- caspase-3 

complex also has highest van der Waals interac-

tion and also has one covalent bond in Asn141, 

which the binding energy of the complex was -

287.8 cal/mol. The van der Waals interaction, 

electrostatic and covalent bond affected the energy 

binding of the protein-ligand complex [32, 36-38]. 

Therefore, based on the interaction type, energy 

score and binding regions, cyanidin-3-O-gluco-

side, delphinidin-3-O-glucoside, pelargonidin-3-

O-glucoside and peonidin-3-O-glucoside are more 

potent as anti-apoptotic through caspase-3 inhibi-

tion.  However, other anthocyanins, malvidin-3-

O-glucoside and petunidin-3-O-glucoside could 

interact with caspase-3 and might have activity for 

inhibiting apoptosis.   

 

Conclusion 

This study indicated that cyanidin-3-O-gluco-

side, delphinidin-3-O-glucoside, pelargonidin-3-

O-glucoside, and peonidin-3-O-glucoside, have 

more potential activity as anti-apoptosis through 

caspase-3 interaction in BIR2 region and allosteric 

sites. Further experiments are necessary to de-

velop natural compounds such as anthocyanins for 

inhibiting caspase-3. 
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